Material Representations: From the Genetic Code to the Evolution of Cellular Automata
نویسندگان
چکیده
We present a new definition of the concept of representation for cognitive science that is based on a study of the origin of structures that are used to store memory in evolving systems. This study consists of novel computer experiments in the evolution of cellular automata to perform nontrivial tasks as well as evidence from biology concerning genetic memory. Our key observation is that representations require inert structures to encode information used to construct appropriate dynamic configurations for the evolving system. We propose criteria to decide if a given structure is a representation by unpacking the idea of inert structures that can be used as memory for arbitrary dynamic configurations. Using a genetic algorithm, we evolved cellular automata rules that can perform nontrivial tasks related to the density task (or majority classification problem) commonly used in the literature. We present the particle catalogs of the new rules following the computational mechanics framework. We discuss if the evolved cellular automata particles may be seen as representations according to our criteria. We show that while they capture some of the essential characteristics of representations, they lack an essential one. Our goal is to show that artificial life can be used to shed new light on the computation-versus-dynamics debate in cognitive science, and indeed function as a constructive bridge between the two camps. Our definitions of representation and cellular automata experiments are proposed as a complementary approach, with both dynamics and informational modes of explanation.
منابع مشابه
Robot Path Planning Using Cellular Automata and Genetic Algorithm
In path planning Problems, a complete description of robot geometry, environments and obstacle are presented; the main goal is routing, moving from source to destination, without dealing with obstacles. Also, the existing route should be optimal. The definition of optimality in routing is the same as minimizing the route, in other words, the best possible route to reach the destination. In most...
متن کاملOptimization of Quantum Cellular Automata Circuits by Genetic Algorithm
Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...
متن کاملBI-OBJECTIVE OPTIMIZATION OF RESERVOIR OPERATION BY MULTI-STEP PARALLEL CELLULAR AUTOMATA
Parallel Cellular Automata (PCA) previously has been employed for optimizing bi-objective reservoir operation, where one release is used to meet both objectives. However, if a single release can only be used for one objective, meaning two separate sets of releases are needed, the method is not applicable anymore. In this paper, Multi-Step Parallel Cellular Automata (MSPCA) has been developed fo...
متن کاملEdge Detection Based On Nearest Neighbor Linear Cellular Automata Rules and Fuzzy Rule Based System
Edge Detection is an important task for sharpening the boundary of images to detect the region of interest. This paper applies a linear cellular automata rules and a Mamdani Fuzzy inference model for edge detection in both monochromatic and the RGB images. In the uniform cellular automata a transition matrix has been developed for edge detection. The Results have been compared to the ...
متن کاملSequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR
Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Artificial life
دوره 11 1-2 شماره
صفحات -
تاریخ انتشار 2005